MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. C83800 Bronze

Both C52400 bronze and C83800 bronze are copper alloys. They have 87% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is C52400 bronze and the bottom bar is C83800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
39
Tensile Strength: Ultimate (UTS), MPa 450 to 880
230

Thermal Properties

Latent Heat of Fusion, J/g 190
180
Maximum Temperature: Mechanical, °C 170
160
Melting Completion (Liquidus), °C 1000
1000
Melting Onset (Solidus), °C 840
840
Specific Heat Capacity, J/kg-K 370
370
Thermal Conductivity, W/m-K 50
72
Thermal Expansion, µm/m-K 18
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
15
Electrical Conductivity: Equal Weight (Specific), % IACS 11
15

Otherwise Unclassified Properties

Base Metal Price, % relative 35
30
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.6
2.9
Embodied Energy, MJ/kg 58
47
Embodied Water, L/kg 390
340

Common Calculations

Stiffness to Weight: Axial, points 6.9
6.6
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 14 to 28
7.4
Strength to Weight: Bending, points 15 to 23
9.6
Thermal Diffusivity, mm2/s 15
22
Thermal Shock Resistance, points 17 to 32
8.6

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Copper (Cu), % 87.8 to 91
82 to 83.8
Iron (Fe), % 0 to 0.1
0 to 0.3
Lead (Pb), % 0 to 0.050
5.0 to 7.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0.030 to 0.35
0 to 1.5
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0
0 to 0.080
Tin (Sn), % 9.0 to 11
3.3 to 4.2
Zinc (Zn), % 0 to 0.2
5.0 to 8.0
Residuals, % 0
0 to 0.7