MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. C96900 Copper-nickel

Both C52400 bronze and C96900 copper-nickel are copper alloys. They have 84% of their average alloy composition in common. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C52400 bronze and the bottom bar is C96900 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
45
Tensile Strength: Ultimate (UTS), MPa 450 to 880
850

Thermal Properties

Latent Heat of Fusion, J/g 190
210
Maximum Temperature: Mechanical, °C 170
210
Melting Completion (Liquidus), °C 1000
1060
Melting Onset (Solidus), °C 840
960
Specific Heat Capacity, J/kg-K 370
380
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
9.0
Electrical Conductivity: Equal Weight (Specific), % IACS 11
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 35
39
Density, g/cm3 8.8
8.8
Embodied Carbon, kg CO2/kg material 3.6
4.6
Embodied Energy, MJ/kg 58
72
Embodied Water, L/kg 390
360

Common Calculations

Stiffness to Weight: Axial, points 6.9
7.7
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 14 to 28
27
Strength to Weight: Bending, points 15 to 23
23
Thermal Shock Resistance, points 17 to 32
30

Alloy Composition

Copper (Cu), % 87.8 to 91
73.6 to 78
Iron (Fe), % 0 to 0.1
0 to 0.5
Lead (Pb), % 0 to 0.050
0 to 0.020
Magnesium (Mg), % 0
0 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
14.5 to 15.5
Niobium (Nb), % 0
0 to 0.1
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
0 to 0.3
Tin (Sn), % 9.0 to 11
7.5 to 8.5
Zinc (Zn), % 0 to 0.2
0 to 0.5
Residuals, % 0
0 to 0.5