MakeItFrom.com
Menu (ESC)

C52400 Bronze vs. S44700 Stainless Steel

C52400 bronze belongs to the copper alloys classification, while S44700 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (17, in this case) are not shown.

For each property being compared, the top bar is C52400 bronze and the bottom bar is S44700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 41
82
Tensile Strength: Ultimate (UTS), MPa 450 to 880
600

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1460
Melting Onset (Solidus), °C 840
1410
Specific Heat Capacity, J/kg-K 370
480
Thermal Expansion, µm/m-K 18
11

Otherwise Unclassified Properties

Base Metal Price, % relative 35
18
Density, g/cm3 8.8
7.8
Embodied Carbon, kg CO2/kg material 3.6
3.6
Embodied Energy, MJ/kg 58
49
Embodied Water, L/kg 390
180

Common Calculations

Stiffness to Weight: Axial, points 6.9
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 14 to 28
21
Strength to Weight: Bending, points 15 to 23
20
Thermal Shock Resistance, points 17 to 32
19

Alloy Composition

Carbon (C), % 0
0 to 0.010
Chromium (Cr), % 0
28 to 30
Copper (Cu), % 87.8 to 91
0 to 0.15
Iron (Fe), % 0 to 0.1
64.9 to 68.5
Lead (Pb), % 0 to 0.050
0
Manganese (Mn), % 0
0 to 0.3
Molybdenum (Mo), % 0
3.5 to 4.2
Nickel (Ni), % 0
0 to 0.15
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0.030 to 0.35
0 to 0.025
Silicon (Si), % 0
0 to 0.2
Sulfur (S), % 0
0 to 0.020
Tin (Sn), % 9.0 to 11
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0