MakeItFrom.com
Menu (ESC)

C53400 Bronze vs. EN AC-44200 Aluminum

C53400 bronze belongs to the copper alloys classification, while EN AC-44200 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C53400 bronze and the bottom bar is EN AC-44200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
72
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
27
Tensile Strength: Ultimate (UTS), MPa 330 to 720
180

Thermal Properties

Latent Heat of Fusion, J/g 200
570
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 1050
590
Melting Onset (Solidus), °C 950
580
Specific Heat Capacity, J/kg-K 380
910
Thermal Conductivity, W/m-K 69
130
Thermal Expansion, µm/m-K 18
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
35
Electrical Conductivity: Equal Weight (Specific), % IACS 15
130

Otherwise Unclassified Properties

Base Metal Price, % relative 32
9.5
Density, g/cm3 8.9
2.5
Embodied Carbon, kg CO2/kg material 3.0
7.7
Embodied Energy, MJ/kg 49
140
Embodied Water, L/kg 350
1050

Common Calculations

Stiffness to Weight: Axial, points 7.0
16
Stiffness to Weight: Bending, points 18
55
Strength to Weight: Axial, points 10 to 22
20
Strength to Weight: Bending, points 12 to 20
28
Thermal Diffusivity, mm2/s 21
59
Thermal Shock Resistance, points 12 to 26
8.4

Alloy Composition

Aluminum (Al), % 0
85.2 to 89.5
Copper (Cu), % 91.8 to 95.7
0 to 0.050
Iron (Fe), % 0 to 0.1
0 to 0.55
Lead (Pb), % 0.8 to 1.2
0
Manganese (Mn), % 0
0 to 0.35
Phosphorus (P), % 0.030 to 0.35
0
Silicon (Si), % 0
10.5 to 13.5
Tin (Sn), % 3.5 to 5.8
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0 to 0.3
0 to 0.1
Residuals, % 0
0 to 0.15