MakeItFrom.com
Menu (ESC)

C53400 Bronze vs. C18700 Copper

Both C53400 bronze and C18700 copper are copper alloys. They have a very high 95% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C53400 bronze and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
43
Tensile Strength: Ultimate (UTS), MPa 330 to 720
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 180
200
Melting Completion (Liquidus), °C 1050
1080
Melting Onset (Solidus), °C 950
950
Specific Heat Capacity, J/kg-K 380
380
Thermal Conductivity, W/m-K 69
380
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
98
Electrical Conductivity: Equal Weight (Specific), % IACS 15
99

Otherwise Unclassified Properties

Base Metal Price, % relative 32
30
Density, g/cm3 8.9
9.0
Embodied Carbon, kg CO2/kg material 3.0
2.6
Embodied Energy, MJ/kg 49
41
Embodied Water, L/kg 350
310

Common Calculations

Stiffness to Weight: Axial, points 7.0
7.1
Stiffness to Weight: Bending, points 18
18
Strength to Weight: Axial, points 10 to 22
9.0 to 10
Strength to Weight: Bending, points 12 to 20
11 to 12
Thermal Diffusivity, mm2/s 21
110
Thermal Shock Resistance, points 12 to 26
10 to 12

Alloy Composition

Copper (Cu), % 91.8 to 95.7
98 to 99.2
Iron (Fe), % 0 to 0.1
0
Lead (Pb), % 0.8 to 1.2
0.8 to 1.5
Phosphorus (P), % 0.030 to 0.35
0
Tin (Sn), % 3.5 to 5.8
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0
0 to 0.5

Comparable Variants