MakeItFrom.com
Menu (ESC)

C53400 Bronze vs. N10665 Nickel

C53400 bronze belongs to the copper alloys classification, while N10665 nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C53400 bronze and the bottom bar is N10665 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
220
Poisson's Ratio 0.34
0.31
Rockwell B Hardness 67 to 93
86
Shear Modulus, GPa 42
84
Tensile Strength: Ultimate (UTS), MPa 330 to 720
860

Thermal Properties

Latent Heat of Fusion, J/g 200
310
Maximum Temperature: Mechanical, °C 180
900
Melting Completion (Liquidus), °C 1050
1620
Melting Onset (Solidus), °C 950
1570
Specific Heat Capacity, J/kg-K 380
390
Thermal Conductivity, W/m-K 69
11
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
1.3
Electrical Conductivity: Equal Weight (Specific), % IACS 15
1.2

Otherwise Unclassified Properties

Base Metal Price, % relative 32
75
Density, g/cm3 8.9
9.3
Embodied Carbon, kg CO2/kg material 3.0
15
Embodied Energy, MJ/kg 49
200
Embodied Water, L/kg 350
270

Common Calculations

Stiffness to Weight: Axial, points 7.0
13
Stiffness to Weight: Bending, points 18
22
Strength to Weight: Axial, points 10 to 22
26
Strength to Weight: Bending, points 12 to 20
22
Thermal Diffusivity, mm2/s 21
3.1
Thermal Shock Resistance, points 12 to 26
27

Alloy Composition

Carbon (C), % 0
0 to 0.020
Chromium (Cr), % 0
0 to 1.0
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 91.8 to 95.7
0
Iron (Fe), % 0 to 0.1
0 to 2.0
Lead (Pb), % 0.8 to 1.2
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
26 to 30
Nickel (Ni), % 0
64.8 to 74
Phosphorus (P), % 0.030 to 0.35
0 to 0.040
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 3.5 to 5.8
0
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.5
0