MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. ACI-ASTM CF3MN Steel

C53800 bronze belongs to the copper alloys classification, while ACI-ASTM CF3MN steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is ACI-ASTM CF3MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3
39
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
78
Tensile Strength: Ultimate (UTS), MPa 830
580
Tensile Strength: Yield (Proof), MPa 660
290

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1010
Melting Completion (Liquidus), °C 980
1440
Melting Onset (Solidus), °C 800
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 37
19
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.9
Embodied Energy, MJ/kg 64
53
Embodied Water, L/kg 420
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
190
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
210
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
20
Strength to Weight: Bending, points 22
20
Thermal Diffusivity, mm2/s 19
4.1
Thermal Shock Resistance, points 31
13

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
17 to 22
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
58.7 to 71.9
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0 to 0.030
9.0 to 13
Nitrogen (N), % 0
0.1 to 0.2
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.5
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0