MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. AISI 301L Stainless Steel

C53800 bronze belongs to the copper alloys classification, while AISI 301L stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is AISI 301L stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3
22 to 50
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
77
Shear Strength, MPa 470
440 to 660
Tensile Strength: Ultimate (UTS), MPa 830
620 to 1040
Tensile Strength: Yield (Proof), MPa 660
250 to 790

Thermal Properties

Latent Heat of Fusion, J/g 190
280
Maximum Temperature: Mechanical, °C 160
890
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 800
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 37
13
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.7
Embodied Energy, MJ/kg 64
39
Embodied Water, L/kg 420
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
210 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
160 to 1580
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
22 to 37
Strength to Weight: Bending, points 22
21 to 29
Thermal Diffusivity, mm2/s 19
4.1
Thermal Shock Resistance, points 31
14 to 24

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
70.7 to 78
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 2.0
Nickel (Ni), % 0 to 0.030
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0