MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. AWS E3155

C53800 bronze belongs to the copper alloys classification, while AWS E3155 belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is AWS E3155.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.3
23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 830
770

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 800
1410
Specific Heat Capacity, J/kg-K 360
450
Thermal Conductivity, W/m-K 61
13
Thermal Expansion, µm/m-K 18
13

Otherwise Unclassified Properties

Base Metal Price, % relative 37
70
Density, g/cm3 8.7
8.4
Embodied Carbon, kg CO2/kg material 3.9
7.7
Embodied Energy, MJ/kg 64
110
Embodied Water, L/kg 420
300

Common Calculations

Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 26
26
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 19
3.3
Thermal Shock Resistance, points 31
20

Alloy Composition

Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 85.1 to 86.5
0 to 0.75
Iron (Fe), % 0 to 0.030
23.3 to 36.3
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
1.0 to 2.5
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.030
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 13.1 to 13.9
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0