MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. EN 1.0434 Steel

C53800 bronze belongs to the copper alloys classification, while EN 1.0434 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is EN 1.0434 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3
12 to 28
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 470
280 to 330
Tensile Strength: Ultimate (UTS), MPa 830
390 to 540
Tensile Strength: Yield (Proof), MPa 660
250 to 450

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
400
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
52
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 37
1.8
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.9
1.4
Embodied Energy, MJ/kg 64
18
Embodied Water, L/kg 420
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
39 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
170 to 540
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 26
14 to 19
Strength to Weight: Bending, points 22
15 to 19
Thermal Diffusivity, mm2/s 19
14
Thermal Shock Resistance, points 31
12 to 17

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0
0.15 to 0.19
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
98.8 to 99.18
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0.65 to 0.85
Nickel (Ni), % 0 to 0.030
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.1
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0