MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. EN 1.4410 Stainless Steel

C53800 bronze belongs to the copper alloys classification, while EN 1.4410 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is EN 1.4410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Elongation at Break, % 2.3
24
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
81
Shear Strength, MPa 470
540
Tensile Strength: Ultimate (UTS), MPa 830
850
Tensile Strength: Yield (Proof), MPa 660
600

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1450
Melting Onset (Solidus), °C 800
1400
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
20
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
4.0
Embodied Energy, MJ/kg 64
56
Embodied Water, L/kg 420
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
880
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
30
Strength to Weight: Bending, points 22
26
Thermal Diffusivity, mm2/s 19
4.0
Thermal Shock Resistance, points 31
23

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
58.1 to 66.8
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0 to 0.030
6.0 to 8.0
Nitrogen (N), % 0
0.24 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0