MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. EN 1.4460 Stainless Steel

C53800 bronze belongs to the copper alloys classification, while EN 1.4460 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is EN 1.4460 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3
21
Poisson's Ratio 0.34
0.27
Shear Modulus, GPa 40
80
Shear Strength, MPa 470
470
Tensile Strength: Ultimate (UTS), MPa 830
750
Tensile Strength: Yield (Proof), MPa 660
510

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1430
Melting Onset (Solidus), °C 800
1390
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
15
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 37
18
Density, g/cm3 8.7
7.7
Embodied Carbon, kg CO2/kg material 3.9
3.4
Embodied Energy, MJ/kg 64
48
Embodied Water, L/kg 420
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
640
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
27
Strength to Weight: Bending, points 22
24
Thermal Diffusivity, mm2/s 19
4.0
Thermal Shock Resistance, points 31
20

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
60.2 to 69.2
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 2.0
Molybdenum (Mo), % 0
1.3 to 2.0
Nickel (Ni), % 0 to 0.030
4.5 to 6.5
Nitrogen (N), % 0
0.050 to 0.2
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0