MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. EN 1.4938 Stainless Steel

C53800 bronze belongs to the copper alloys classification, while EN 1.4938 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is EN 1.4938 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3
16 to 17
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Shear Strength, MPa 470
540 to 630
Tensile Strength: Ultimate (UTS), MPa 830
870 to 1030
Tensile Strength: Yield (Proof), MPa 660
640 to 870

Thermal Properties

Latent Heat of Fusion, J/g 190
270
Maximum Temperature: Mechanical, °C 160
750
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
30
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
3.3
Embodied Energy, MJ/kg 64
47
Embodied Water, L/kg 420
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
1050 to 1920
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
31 to 37
Strength to Weight: Bending, points 22
26 to 29
Thermal Diffusivity, mm2/s 19
8.1
Thermal Shock Resistance, points 31
30 to 35

Alloy Composition

Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
11 to 12.5
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
80.5 to 84.8
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0.4 to 0.9
Molybdenum (Mo), % 0
1.5 to 2.0
Nickel (Ni), % 0 to 0.030
2.0 to 3.0
Nitrogen (N), % 0
0.020 to 0.040
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 13.1 to 13.9
0
Vanadium (V), % 0
0.25 to 0.4
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0