MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. EN AC-48100 Aluminum

C53800 bronze belongs to the copper alloys classification, while EN AC-48100 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C53800 bronze and the bottom bar is EN AC-48100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
76
Elongation at Break, % 2.3
1.1
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 40
29
Tensile Strength: Ultimate (UTS), MPa 830
240 to 330
Tensile Strength: Yield (Proof), MPa 660
190 to 300

Thermal Properties

Latent Heat of Fusion, J/g 190
640
Maximum Temperature: Mechanical, °C 160
170
Melting Completion (Liquidus), °C 980
580
Melting Onset (Solidus), °C 800
470
Specific Heat Capacity, J/kg-K 360
880
Thermal Conductivity, W/m-K 61
130
Thermal Expansion, µm/m-K 18
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
87

Otherwise Unclassified Properties

Base Metal Price, % relative 37
11
Density, g/cm3 8.7
2.8
Embodied Carbon, kg CO2/kg material 3.9
7.3
Embodied Energy, MJ/kg 64
130
Embodied Water, L/kg 420
940

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
2.3 to 3.6
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
250 to 580
Stiffness to Weight: Axial, points 6.8
15
Stiffness to Weight: Bending, points 18
51
Strength to Weight: Axial, points 26
24 to 33
Strength to Weight: Bending, points 22
31 to 38
Thermal Diffusivity, mm2/s 19
55
Thermal Shock Resistance, points 31
11 to 16

Alloy Composition

Aluminum (Al), % 0
72.1 to 79.8
Copper (Cu), % 85.1 to 86.5
4.0 to 5.0
Iron (Fe), % 0 to 0.030
0 to 1.3
Lead (Pb), % 0.4 to 0.6
0
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 0 to 0.060
0 to 0.5
Nickel (Ni), % 0 to 0.030
0 to 0.3
Silicon (Si), % 0
16 to 18
Tin (Sn), % 13.1 to 13.9
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.12
0 to 1.5
Residuals, % 0
0 to 0.25