MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. SAE-AISI 4340 Steel

C53800 bronze belongs to the copper alloys classification, while SAE-AISI 4340 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is SAE-AISI 4340 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 2.3
12 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
73
Shear Strength, MPa 470
430 to 770
Tensile Strength: Ultimate (UTS), MPa 830
690 to 1280
Tensile Strength: Yield (Proof), MPa 660
470 to 1150

Thermal Properties

Latent Heat of Fusion, J/g 190
250
Maximum Temperature: Mechanical, °C 160
430
Melting Completion (Liquidus), °C 980
1460
Melting Onset (Solidus), °C 800
1420
Specific Heat Capacity, J/kg-K 360
470
Thermal Conductivity, W/m-K 61
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.5
Density, g/cm3 8.7
7.8
Embodied Carbon, kg CO2/kg material 3.9
1.7
Embodied Energy, MJ/kg 64
22
Embodied Water, L/kg 420
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
79 to 170
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
590 to 3490
Stiffness to Weight: Axial, points 6.8
13
Stiffness to Weight: Bending, points 18
24
Strength to Weight: Axial, points 26
24 to 45
Strength to Weight: Bending, points 22
22 to 33
Thermal Diffusivity, mm2/s 19
12
Thermal Shock Resistance, points 31
20 to 38

Alloy Composition

Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
95.1 to 96.3
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0.6 to 0.8
Molybdenum (Mo), % 0
0.2 to 0.3
Nickel (Ni), % 0 to 0.030
1.7 to 2.0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0