MakeItFrom.com
Menu (ESC)

C53800 Bronze vs. S35115 Stainless Steel

C53800 bronze belongs to the copper alloys classification, while S35115 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C53800 bronze and the bottom bar is S35115 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 2.3
46
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
79
Shear Strength, MPa 470
470
Tensile Strength: Ultimate (UTS), MPa 830
670
Tensile Strength: Yield (Proof), MPa 660
310

Thermal Properties

Latent Heat of Fusion, J/g 190
310
Maximum Temperature: Mechanical, °C 160
1100
Melting Completion (Liquidus), °C 980
1420
Melting Onset (Solidus), °C 800
1370
Specific Heat Capacity, J/kg-K 360
480
Thermal Conductivity, W/m-K 61
15
Thermal Expansion, µm/m-K 18
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.0
2.0
Electrical Conductivity: Equal Weight (Specific), % IACS 9.3
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 37
26
Density, g/cm3 8.7
7.9
Embodied Carbon, kg CO2/kg material 3.9
4.8
Embodied Energy, MJ/kg 64
67
Embodied Water, L/kg 420
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
250
Resilience: Unit (Modulus of Resilience), kJ/m3 2020
240
Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
25
Strength to Weight: Axial, points 26
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 19
3.9
Thermal Shock Resistance, points 31
15

Alloy Composition

Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
23 to 25
Copper (Cu), % 85.1 to 86.5
0
Iron (Fe), % 0 to 0.030
47.6 to 55.8
Lead (Pb), % 0.4 to 0.6
0
Manganese (Mn), % 0 to 0.060
0 to 1.0
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0 to 0.030
19 to 22
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0.5 to 1.5
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 13.1 to 13.9
0
Zinc (Zn), % 0 to 0.12
0
Residuals, % 0 to 0.2
0