MakeItFrom.com
Menu (ESC)

C54400 Bronze vs. EN 1.3975 Stainless Steel

C54400 bronze belongs to the copper alloys classification, while EN 1.3975 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is C54400 bronze and the bottom bar is EN 1.3975 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 330 to 720
660

Thermal Properties

Latent Heat of Fusion, J/g 190
340
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 1000
1360
Melting Onset (Solidus), °C 930
1320
Specific Heat Capacity, J/kg-K 370
500
Thermal Expansion, µm/m-K 18
16

Otherwise Unclassified Properties

Base Metal Price, % relative 31
15
Density, g/cm3 8.9
7.5
Embodied Carbon, kg CO2/kg material 2.9
3.3
Embodied Energy, MJ/kg 48
47
Embodied Water, L/kg 340
150

Common Calculations

Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
26
Strength to Weight: Axial, points 10 to 22
24
Strength to Weight: Bending, points 12 to 20
22
Thermal Shock Resistance, points 12 to 26
15

Alloy Composition

Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 85.4 to 91.5
0
Iron (Fe), % 0 to 0.1
58.2 to 65.4
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
7.0 to 9.0
Molybdenum (Mo), % 0
0 to 1.0
Nickel (Ni), % 0
8.0 to 9.0
Nitrogen (N), % 0
0.080 to 0.18
Phosphorus (P), % 0.010 to 0.5
0 to 0.045
Silicon (Si), % 0
3.5 to 4.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 3.5 to 4.5
0
Zinc (Zn), % 1.5 to 4.5
0
Residuals, % 0 to 0.5
0