MakeItFrom.com
Menu (ESC)

C54400 Bronze vs. R30155 Cobalt

C54400 bronze belongs to the copper alloys classification, while R30155 cobalt belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (14, in this case) are not shown.

For each property being compared, the top bar is C54400 bronze and the bottom bar is R30155 cobalt.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
210
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 330 to 720
850

Thermal Properties

Latent Heat of Fusion, J/g 190
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 1000
1470
Melting Onset (Solidus), °C 930
1420
Specific Heat Capacity, J/kg-K 370
450
Thermal Conductivity, W/m-K 86
12
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 31
80
Density, g/cm3 8.9
8.5
Embodied Carbon, kg CO2/kg material 2.9
9.7
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 340
300

Common Calculations

Stiffness to Weight: Axial, points 6.8
14
Stiffness to Weight: Bending, points 18
23
Strength to Weight: Axial, points 10 to 22
28
Strength to Weight: Bending, points 12 to 20
24
Thermal Diffusivity, mm2/s 26
3.2
Thermal Shock Resistance, points 12 to 26
21

Alloy Composition

Carbon (C), % 0
0.080 to 0.16
Chromium (Cr), % 0
20 to 22.5
Cobalt (Co), % 0
18.5 to 21
Copper (Cu), % 85.4 to 91.5
0
Iron (Fe), % 0 to 0.1
24.3 to 36.2
Lead (Pb), % 3.5 to 4.5
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0
19 to 21
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0
0 to 0.2
Phosphorus (P), % 0.010 to 0.5
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0.75 to 1.3
Tin (Sn), % 3.5 to 4.5
0
Tungsten (W), % 0
2.0 to 3.0
Zinc (Zn), % 1.5 to 4.5
0
Residuals, % 0 to 0.5
0