MakeItFrom.com
Menu (ESC)

C55180 Copper vs. Grade 18 Titanium

C55180 copper belongs to the copper alloys classification, while grade 18 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is C55180 copper and the bottom bar is grade 18 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 20
11 to 17
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 41
40
Tensile Strength: Ultimate (UTS), MPa 200
690 to 980
Tensile Strength: Yield (Proof), MPa 100
540 to 810

Thermal Properties

Latent Heat of Fusion, J/g 200
410
Maximum Temperature: Mechanical, °C 200
330
Melting Completion (Liquidus), °C 920
1640
Melting Onset (Solidus), °C 710
1590
Specific Heat Capacity, J/kg-K 400
550
Thermal Conductivity, W/m-K 200
8.3
Thermal Expansion, µm/m-K 17
9.9

Otherwise Unclassified Properties

Density, g/cm3 8.6
4.5
Embodied Carbon, kg CO2/kg material 2.5
41
Embodied Energy, MJ/kg 39
670
Embodied Water, L/kg 290
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
87 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 48
1380 to 3110
Stiffness to Weight: Axial, points 7.1
13
Stiffness to Weight: Bending, points 18
35
Strength to Weight: Axial, points 6.4
43 to 61
Strength to Weight: Bending, points 8.8
39 to 49
Thermal Diffusivity, mm2/s 56
3.4
Thermal Shock Resistance, points 7.9
47 to 67

Alloy Composition

Aluminum (Al), % 0
2.5 to 3.5
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 94.7 to 95.2
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 0
0 to 0.25
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.15
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 4.8 to 5.2
0
Titanium (Ti), % 0
92.5 to 95.5
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4