MakeItFrom.com
Menu (ESC)

C55180 Copper vs. C72800 Copper-nickel

Both C55180 copper and C72800 copper-nickel are copper alloys. They have 81% of their average alloy composition in common. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C55180 copper and the bottom bar is C72800 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 20
3.9 to 23
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 41
44
Tensile Strength: Ultimate (UTS), MPa 200
520 to 1270
Tensile Strength: Yield (Proof), MPa 100
250 to 1210

Thermal Properties

Latent Heat of Fusion, J/g 200
210
Maximum Temperature: Mechanical, °C 200
200
Melting Completion (Liquidus), °C 920
1080
Melting Onset (Solidus), °C 710
920
Specific Heat Capacity, J/kg-K 400
380
Thermal Conductivity, W/m-K 200
55
Thermal Expansion, µm/m-K 17
17

Otherwise Unclassified Properties

Base Metal Price, % relative 29
38
Density, g/cm3 8.6
8.8
Embodied Carbon, kg CO2/kg material 2.5
4.4
Embodied Energy, MJ/kg 39
68
Embodied Water, L/kg 290
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34
37 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 48
260 to 5650
Stiffness to Weight: Axial, points 7.1
7.4
Stiffness to Weight: Bending, points 18
19
Strength to Weight: Axial, points 6.4
17 to 40
Strength to Weight: Bending, points 8.8
16 to 30
Thermal Diffusivity, mm2/s 56
17
Thermal Shock Resistance, points 7.9
19 to 45

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Antimony (Sb), % 0
0 to 0.020
Bismuth (Bi), % 0
0 to 0.0010
Boron (B), % 0
0 to 0.0010
Copper (Cu), % 94.7 to 95.2
78.3 to 82.8
Iron (Fe), % 0
0 to 0.5
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0.0050 to 0.15
Manganese (Mn), % 0
0.050 to 0.3
Nickel (Ni), % 0
9.5 to 10.5
Niobium (Nb), % 0
0.1 to 0.3
Phosphorus (P), % 4.8 to 5.2
0 to 0.0050
Silicon (Si), % 0
0 to 0.050
Sulfur (S), % 0
0 to 0.0025
Tin (Sn), % 0
7.5 to 8.5
Titanium (Ti), % 0
0 to 0.010
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.3