MakeItFrom.com
Menu (ESC)

C55181 Copper vs. CC483K Bronze

Both C55181 copper and CC483K bronze are copper alloys. Both are furnished in the as-fabricated (no temper or treatment) condition. They have 87% of their average alloy composition in common. There are 20 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is C55181 copper and the bottom bar is CC483K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 200
310

Thermal Properties

Latent Heat of Fusion, J/g 190
190
Maximum Temperature: Mechanical, °C 200
170
Melting Completion (Liquidus), °C 790
990
Melting Onset (Solidus), °C 710
870
Specific Heat Capacity, J/kg-K 410
370
Thermal Expansion, µm/m-K 16
18

Otherwise Unclassified Properties

Base Metal Price, % relative 28
36
Density, g/cm3 8.5
8.7
Embodied Carbon, kg CO2/kg material 2.4
3.8
Embodied Energy, MJ/kg 38
62
Embodied Water, L/kg 290
400

Common Calculations

Stiffness to Weight: Axial, points 7.0
6.9
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 6.5
9.9
Strength to Weight: Bending, points 8.9
12
Thermal Shock Resistance, points 8.2
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.15
Copper (Cu), % 92.4 to 93
85 to 89
Iron (Fe), % 0
0 to 0.2
Lead (Pb), % 0
0 to 0.7
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 7.0 to 7.5
0 to 0.6
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.050
Tin (Sn), % 0
10.5 to 13
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.15
0