MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. 2117 Aluminum

C61000 bronze belongs to the copper alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61000 bronze and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
71
Elongation at Break, % 29 to 50
26
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 42
27
Shear Strength, MPa 280 to 300
200
Tensile Strength: Ultimate (UTS), MPa 390 to 460
300
Tensile Strength: Yield (Proof), MPa 150 to 190
170

Thermal Properties

Latent Heat of Fusion, J/g 220
400
Maximum Temperature: Mechanical, °C 210
220
Melting Completion (Liquidus), °C 1040
650
Melting Onset (Solidus), °C 990
550
Specific Heat Capacity, J/kg-K 420
880
Thermal Conductivity, W/m-K 69
150
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
40
Electrical Conductivity: Equal Weight (Specific), % IACS 16
120

Otherwise Unclassified Properties

Base Metal Price, % relative 29
10
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.2
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 370
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
64
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
190
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 13 to 15
28
Strength to Weight: Bending, points 14 to 16
33
Thermal Diffusivity, mm2/s 19
59
Thermal Shock Resistance, points 14 to 16
12

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
91 to 97.6
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 90.2 to 94
2.2 to 4.5
Iron (Fe), % 0 to 0.5
0 to 0.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 0
0.4 to 1.0
Silicon (Si), % 0 to 0.1
0.2 to 0.8
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0 to 0.2
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15