MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. AWS ER120S-1

C61000 bronze belongs to the copper alloys classification, while AWS ER120S-1 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61000 bronze and the bottom bar is AWS ER120S-1.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29 to 50
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Tensile Strength: Ultimate (UTS), MPa 390 to 460
930
Tensile Strength: Yield (Proof), MPa 150 to 190
830

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1410
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 69
46
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 16
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.2
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.9
Embodied Energy, MJ/kg 49
25
Embodied Water, L/kg 370
56

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
150
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
1850
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 15
33
Strength to Weight: Bending, points 14 to 16
27
Thermal Diffusivity, mm2/s 19
13
Thermal Shock Resistance, points 14 to 16
27

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
0 to 0.1
Carbon (C), % 0
0 to 0.1
Chromium (Cr), % 0
0 to 0.6
Copper (Cu), % 90.2 to 94
0 to 0.25
Iron (Fe), % 0 to 0.5
92.4 to 96.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
1.4 to 1.8
Molybdenum (Mo), % 0
0.3 to 0.65
Nickel (Ni), % 0
2.0 to 2.8
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.1
0.25 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.1
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
0 to 0.1
Residuals, % 0
0 to 0.5