MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. EN 1.1191 Steel

C61000 bronze belongs to the copper alloys classification, while EN 1.1191 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61000 bronze and the bottom bar is EN 1.1191 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29 to 50
16 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
72
Shear Strength, MPa 280 to 300
380 to 430
Tensile Strength: Ultimate (UTS), MPa 390 to 460
630 to 700
Tensile Strength: Yield (Proof), MPa 150 to 190
310 to 440

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 69
48
Thermal Expansion, µm/m-K 18
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 16
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 370
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
260 to 510
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 15
22 to 25
Strength to Weight: Bending, points 14 to 16
21 to 22
Thermal Diffusivity, mm2/s 19
13
Thermal Shock Resistance, points 14 to 16
20 to 22

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
0
Carbon (C), % 0
0.42 to 0.5
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 90.2 to 94
0
Iron (Fe), % 0 to 0.5
97.3 to 99.08
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0.5 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0