MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. EN 1.4415 Stainless Steel

C61000 bronze belongs to the copper alloys classification, while EN 1.4415 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61000 bronze and the bottom bar is EN 1.4415 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 29 to 50
17 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 280 to 300
520 to 570
Tensile Strength: Ultimate (UTS), MPa 390 to 460
830 to 930
Tensile Strength: Yield (Proof), MPa 150 to 190
730 to 840

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 210
790
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 69
19
Thermal Expansion, µm/m-K 18
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 16
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
13
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.0
3.6
Embodied Energy, MJ/kg 49
51
Embodied Water, L/kg 370
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
150 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
1350 to 1790
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 15
29 to 33
Strength to Weight: Bending, points 14 to 16
25 to 27
Thermal Diffusivity, mm2/s 19
5.1
Thermal Shock Resistance, points 14 to 16
30 to 34

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 90.2 to 94
0
Iron (Fe), % 0 to 0.5
75.9 to 82.4
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
1.5 to 2.5
Nickel (Ni), % 0
4.5 to 6.5
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0

Comparable Variants