MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. EN 1.4736 Stainless Steel

C61000 bronze belongs to the copper alloys classification, while EN 1.4736 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61000 bronze and the bottom bar is EN 1.4736 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29 to 50
28
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 280 to 300
370
Tensile Strength: Ultimate (UTS), MPa 390 to 460
580
Tensile Strength: Yield (Proof), MPa 150 to 190
310

Thermal Properties

Latent Heat of Fusion, J/g 220
290
Maximum Temperature: Mechanical, °C 210
1000
Melting Completion (Liquidus), °C 1040
1420
Melting Onset (Solidus), °C 990
1380
Specific Heat Capacity, J/kg-K 420
490
Thermal Conductivity, W/m-K 69
21
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 16
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.5
7.6
Embodied Carbon, kg CO2/kg material 3.0
2.4
Embodied Energy, MJ/kg 49
35
Embodied Water, L/kg 370
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
140
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
250
Stiffness to Weight: Axial, points 7.4
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 13 to 15
21
Strength to Weight: Bending, points 14 to 16
20
Thermal Diffusivity, mm2/s 19
5.6
Thermal Shock Resistance, points 14 to 16
21

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
1.7 to 2.1
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
17 to 18
Copper (Cu), % 90.2 to 94
0
Iron (Fe), % 0 to 0.5
77 to 81.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.8
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0