MakeItFrom.com
Menu (ESC)

C61000 Bronze vs. EN 1.8823 Steel

C61000 bronze belongs to the copper alloys classification, while EN 1.8823 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61000 bronze and the bottom bar is EN 1.8823 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 29 to 50
25
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 280 to 300
340
Tensile Strength: Ultimate (UTS), MPa 390 to 460
530
Tensile Strength: Yield (Proof), MPa 150 to 190
360

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
410
Melting Completion (Liquidus), °C 1040
1460
Melting Onset (Solidus), °C 990
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 69
47
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 15
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 16
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.4
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.6
Embodied Energy, MJ/kg 49
22
Embodied Water, L/kg 370
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 160
120
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 160
360
Stiffness to Weight: Axial, points 7.4
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 13 to 15
19
Strength to Weight: Bending, points 14 to 16
19
Thermal Diffusivity, mm2/s 19
13
Thermal Shock Resistance, points 14 to 16
16

Alloy Composition

Aluminum (Al), % 6.0 to 8.5
0.015 to 0.034
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0
0 to 0.35
Copper (Cu), % 90.2 to 94
0 to 0.6
Iron (Fe), % 0 to 0.5
95.6 to 99.985
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.13
Nickel (Ni), % 0
0 to 0.55
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.017
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 0.55
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.060
Vanadium (V), % 0
0 to 0.12
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.5
0