MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. 772.0 Aluminum

C61300 bronze belongs to the copper alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61300 bronze and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 34 to 40
6.3 to 8.4
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
26
Tensile Strength: Ultimate (UTS), MPa 550 to 580
260 to 320
Tensile Strength: Yield (Proof), MPa 230 to 310
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 220
380
Maximum Temperature: Mechanical, °C 210
180
Melting Completion (Liquidus), °C 1050
630
Melting Onset (Solidus), °C 1040
580
Specific Heat Capacity, J/kg-K 420
870
Thermal Conductivity, W/m-K 55
150
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
35
Electrical Conductivity: Equal Weight (Specific), % IACS 13
110

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.5
3.0
Embodied Carbon, kg CO2/kg material 3.0
8.0
Embodied Energy, MJ/kg 49
150
Embodied Water, L/kg 370
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
350 to 430
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
46
Strength to Weight: Axial, points 18 to 19
25 to 31
Strength to Weight: Bending, points 18
31 to 36
Thermal Diffusivity, mm2/s 15
58
Thermal Shock Resistance, points 19 to 20
11 to 14

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
91.2 to 93.2
Chromium (Cr), % 0
0.060 to 0.2
Copper (Cu), % 88 to 91.8
0 to 0.1
Iron (Fe), % 2.0 to 3.0
0 to 0.15
Lead (Pb), % 0 to 0.010
0
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.15
Tin (Sn), % 0.2 to 0.5
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0 to 0.2
6.0 to 7.0
Residuals, % 0
0 to 0.15