MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. ASTM A387 Grade 21 Steel

C61300 bronze belongs to the copper alloys classification, while ASTM A387 grade 21 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is ASTM A387 grade 21 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
21
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 370 to 390
310 to 370
Tensile Strength: Ultimate (UTS), MPa 550 to 580
500 to 590
Tensile Strength: Yield (Proof), MPa 230 to 310
230 to 350

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 210
480
Melting Completion (Liquidus), °C 1050
1470
Melting Onset (Solidus), °C 1040
1430
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
41
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
4.1
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.8
Embodied Energy, MJ/kg 49
23
Embodied Water, L/kg 370
62

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
140 to 320
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
18 to 21
Strength to Weight: Bending, points 18
18 to 20
Thermal Diffusivity, mm2/s 15
11
Thermal Shock Resistance, points 19 to 20
14 to 17

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0
Carbon (C), % 0
0.050 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 88 to 91.8
0
Iron (Fe), % 2.0 to 3.0
94.4 to 96
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0