MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. EN 1.4877 Stainless Steel

C61300 bronze belongs to the copper alloys classification, while EN 1.4877 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is EN 1.4877 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34 to 40
36
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 43
79
Shear Strength, MPa 370 to 390
420
Tensile Strength: Ultimate (UTS), MPa 550 to 580
630
Tensile Strength: Yield (Proof), MPa 230 to 310
200

Thermal Properties

Latent Heat of Fusion, J/g 220
310
Maximum Temperature: Mechanical, °C 210
1150
Melting Completion (Liquidus), °C 1050
1400
Melting Onset (Solidus), °C 1040
1360
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
12
Thermal Expansion, µm/m-K 18
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.8
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 29
37
Density, g/cm3 8.5
8.0
Embodied Carbon, kg CO2/kg material 3.0
6.2
Embodied Energy, MJ/kg 49
89
Embodied Water, L/kg 370
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
180
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
100
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
22
Strength to Weight: Bending, points 18
20
Thermal Diffusivity, mm2/s 15
3.2
Thermal Shock Resistance, points 19 to 20
15

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 88 to 91.8
0
Iron (Fe), % 2.0 to 3.0
36.4 to 42.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 0.15
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.015
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0