MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. EN 1.5501 Steel

C61300 bronze belongs to the copper alloys classification, while EN 1.5501 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is EN 1.5501 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
12 to 17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 370 to 390
270 to 310
Tensile Strength: Ultimate (UTS), MPa 550 to 580
390 to 510
Tensile Strength: Yield (Proof), MPa 230 to 310
260 to 420

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
400
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
52
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
1.8
Density, g/cm3 8.5
7.9
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
18
Embodied Water, L/kg 370
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
40 to 83
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
190 to 460
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
14 to 18
Strength to Weight: Bending, points 18
15 to 18
Thermal Diffusivity, mm2/s 15
14
Thermal Shock Resistance, points 19 to 20
11 to 15

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.13 to 0.16
Copper (Cu), % 88 to 91.8
0 to 0.25
Iron (Fe), % 2.0 to 3.0
98.4 to 99.269
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.6 to 0.8
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.015
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0