MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. EN 2.4952 Nickel

C61300 bronze belongs to the copper alloys classification, while EN 2.4952 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is EN 2.4952 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
17
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
74
Shear Strength, MPa 370 to 390
700
Tensile Strength: Ultimate (UTS), MPa 550 to 580
1150
Tensile Strength: Yield (Proof), MPa 230 to 310
670

Thermal Properties

Latent Heat of Fusion, J/g 220
330
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 1050
1350
Melting Onset (Solidus), °C 1040
1300
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
12
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 29
55
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 3.0
9.8
Embodied Energy, MJ/kg 49
140
Embodied Water, L/kg 370
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
170
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
1180
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 19
38
Strength to Weight: Bending, points 18
29
Thermal Diffusivity, mm2/s 15
3.1
Thermal Shock Resistance, points 19 to 20
33

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
1.0 to 1.8
Boron (B), % 0
0 to 0.0080
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 88 to 91.8
0 to 0.2
Iron (Fe), % 2.0 to 3.0
0 to 1.5
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0 to 1.0
Nickel (Ni), % 0 to 0.15
65 to 79.2
Phosphorus (P), % 0 to 0.015
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Tin (Sn), % 0.2 to 0.5
0
Titanium (Ti), % 0
1.8 to 2.7
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0