MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. Nickel 725

C61300 bronze belongs to the copper alloys classification, while nickel 725 belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is nickel 725.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 34 to 40
34
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
78
Shear Strength, MPa 370 to 390
580
Tensile Strength: Ultimate (UTS), MPa 550 to 580
860
Tensile Strength: Yield (Proof), MPa 230 to 310
350

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 210
980
Melting Completion (Liquidus), °C 1050
1340
Melting Onset (Solidus), °C 1040
1270
Specific Heat Capacity, J/kg-K 420
440
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
75
Density, g/cm3 8.5
8.5
Embodied Carbon, kg CO2/kg material 3.0
13
Embodied Energy, MJ/kg 49
190
Embodied Water, L/kg 370
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
240
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
300
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 18 to 19
28
Strength to Weight: Bending, points 18
24
Thermal Shock Resistance, points 19 to 20
23

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0 to 0.35
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
19 to 22.5
Copper (Cu), % 88 to 91.8
0
Iron (Fe), % 2.0 to 3.0
2.3 to 15.3
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0 to 0.35
Molybdenum (Mo), % 0
7.0 to 9.5
Nickel (Ni), % 0 to 0.15
55 to 59
Niobium (Nb), % 0
2.8 to 4.0
Phosphorus (P), % 0 to 0.015
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.2
Sulfur (S), % 0
0 to 0.010
Tin (Sn), % 0.2 to 0.5
0
Titanium (Ti), % 0
1.0 to 1.7
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0