MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. SAE-AISI 5140 Steel

C61300 bronze belongs to the copper alloys classification, while SAE-AISI 5140 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is SAE-AISI 5140 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 34 to 40
12 to 29
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 43
73
Shear Strength, MPa 370 to 390
360 to 600
Tensile Strength: Ultimate (UTS), MPa 550 to 580
560 to 970
Tensile Strength: Yield (Proof), MPa 230 to 310
290 to 840

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 210
420
Melting Completion (Liquidus), °C 1050
1460
Melting Onset (Solidus), °C 1040
1420
Specific Heat Capacity, J/kg-K 420
470
Thermal Conductivity, W/m-K 55
45
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.1
Density, g/cm3 8.5
7.8
Embodied Carbon, kg CO2/kg material 3.0
1.4
Embodied Energy, MJ/kg 49
19
Embodied Water, L/kg 370
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
76 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
220 to 1880
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 18 to 19
20 to 34
Strength to Weight: Bending, points 18
19 to 28
Thermal Diffusivity, mm2/s 15
12
Thermal Shock Resistance, points 19 to 20
16 to 29

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
0
Carbon (C), % 0
0.38 to 0.43
Chromium (Cr), % 0
0.7 to 0.9
Copper (Cu), % 88 to 91.8
0
Iron (Fe), % 2.0 to 3.0
97.3 to 98.1
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0.7 to 0.9
Nickel (Ni), % 0 to 0.15
0
Phosphorus (P), % 0 to 0.015
0 to 0.035
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Tin (Sn), % 0.2 to 0.5
0
Zinc (Zn), % 0 to 0.2
0
Residuals, % 0 to 0.2
0