MakeItFrom.com
Menu (ESC)

C61300 Bronze vs. Titanium 6-5-0.5

C61300 bronze belongs to the copper alloys classification, while titanium 6-5-0.5 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is C61300 bronze and the bottom bar is titanium 6-5-0.5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
100
Elongation at Break, % 34 to 40
6.7
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 43
40
Shear Strength, MPa 370 to 390
630
Tensile Strength: Ultimate (UTS), MPa 550 to 580
1080
Tensile Strength: Yield (Proof), MPa 230 to 310
990

Thermal Properties

Latent Heat of Fusion, J/g 220
410
Maximum Temperature: Mechanical, °C 210
300
Melting Completion (Liquidus), °C 1050
1610
Melting Onset (Solidus), °C 1040
1560
Specific Heat Capacity, J/kg-K 420
550
Thermal Conductivity, W/m-K 55
4.2
Thermal Expansion, µm/m-K 18
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
41
Density, g/cm3 8.5
4.5
Embodied Carbon, kg CO2/kg material 3.0
33
Embodied Energy, MJ/kg 49
540
Embodied Water, L/kg 370
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 190
71
Resilience: Unit (Modulus of Resilience), kJ/m3 230 to 410
4630
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
35
Strength to Weight: Axial, points 18 to 19
67
Strength to Weight: Bending, points 18
52
Thermal Diffusivity, mm2/s 15
1.7
Thermal Shock Resistance, points 19 to 20
79

Alloy Composition

Aluminum (Al), % 6.0 to 7.5
5.7 to 6.3
Carbon (C), % 0
0 to 0.080
Copper (Cu), % 88 to 91.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 2.0 to 3.0
0 to 0.2
Lead (Pb), % 0 to 0.010
0
Manganese (Mn), % 0 to 0.2
0
Molybdenum (Mo), % 0
0.25 to 0.75
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.19
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.1
0 to 0.4
Tin (Sn), % 0.2 to 0.5
0
Titanium (Ti), % 0
85.6 to 90.1
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.4