MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. 7021 Aluminum

C61500 bronze belongs to the copper alloys classification, while 7021 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61500 bronze and the bottom bar is 7021 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
69
Elongation at Break, % 3.0 to 55
9.4
Poisson's Ratio 0.34
0.32
Shear Modulus, GPa 42
26
Shear Strength, MPa 350 to 550
270
Tensile Strength: Ultimate (UTS), MPa 480 to 970
460
Tensile Strength: Yield (Proof), MPa 150 to 720
390

Thermal Properties

Latent Heat of Fusion, J/g 220
380
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1040
630
Melting Onset (Solidus), °C 1030
510
Specific Heat Capacity, J/kg-K 430
870
Thermal Conductivity, W/m-K 58
150
Thermal Expansion, µm/m-K 18
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
38
Electrical Conductivity: Equal Weight (Specific), % IACS 13
120

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.4
2.9
Embodied Carbon, kg CO2/kg material 3.2
8.3
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 380
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
41
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
1110
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
47
Strength to Weight: Axial, points 16 to 32
44
Strength to Weight: Bending, points 16 to 26
45
Thermal Diffusivity, mm2/s 16
59
Thermal Shock Resistance, points 17 to 34
20

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
90.7 to 93.7
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 89 to 90.5
0 to 0.25
Iron (Fe), % 0
0 to 0.4
Lead (Pb), % 0 to 0.015
0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.1
Nickel (Ni), % 1.8 to 2.2
0
Silicon (Si), % 0
0 to 0.25
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
5.0 to 6.0
Zirconium (Zr), % 0
0.080 to 0.18
Residuals, % 0
0 to 0.15