MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. AISI 409 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while AISI 409 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is AISI 409 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
24
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Shear Strength, MPa 350 to 550
270
Tensile Strength: Ultimate (UTS), MPa 480 to 970
420
Tensile Strength: Yield (Proof), MPa 150 to 720
200

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 220
710
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
25
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 29
6.5
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.0
Embodied Energy, MJ/kg 52
28
Embodied Water, L/kg 380
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
83
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
100
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
15
Strength to Weight: Bending, points 16 to 26
16
Thermal Diffusivity, mm2/s 16
6.7
Thermal Shock Resistance, points 17 to 34
15

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
10.5 to 11.7
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
84.9 to 89.5
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 1.8 to 2.2
0 to 0.5
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0 to 0.75
Residuals, % 0 to 0.5
0