MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. AISI 440A Stainless Steel

C61500 bronze belongs to the copper alloys classification, while AISI 440A stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is AISI 440A stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
5.0 to 20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
77
Shear Strength, MPa 350 to 550
450 to 1040
Tensile Strength: Ultimate (UTS), MPa 480 to 970
730 to 1790
Tensile Strength: Yield (Proof), MPa 150 to 720
420 to 1650

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
760
Melting Completion (Liquidus), °C 1040
1480
Melting Onset (Solidus), °C 1030
1370
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
23
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.0
Density, g/cm3 8.4
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.2
Embodied Energy, MJ/kg 52
31
Embodied Water, L/kg 380
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
87 to 120
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
26 to 65
Strength to Weight: Bending, points 16 to 26
23 to 43
Thermal Diffusivity, mm2/s 16
6.2
Thermal Shock Resistance, points 17 to 34
26 to 65

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
78.4 to 83.4
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Nickel (Ni), % 1.8 to 2.2
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Residuals, % 0 to 0.5
0