MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. ASTM A182 Grade F911

C61500 bronze belongs to the copper alloys classification, while ASTM A182 grade F911 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is ASTM A182 grade F911.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
20
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 350 to 550
430
Tensile Strength: Ultimate (UTS), MPa 480 to 970
690
Tensile Strength: Yield (Proof), MPa 150 to 720
500

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Maximum Temperature: Mechanical, °C 220
600
Melting Completion (Liquidus), °C 1040
1480
Melting Onset (Solidus), °C 1030
1440
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
26
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
9.2
Electrical Conductivity: Equal Weight (Specific), % IACS 13
10

Otherwise Unclassified Properties

Base Metal Price, % relative 29
9.5
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 52
40
Embodied Water, L/kg 380
90

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
130
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
650
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
24
Strength to Weight: Bending, points 16 to 26
22
Thermal Diffusivity, mm2/s 16
6.9
Thermal Shock Resistance, points 17 to 34
19

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0 to 0.020
Boron (B), % 0
0.00030 to 0.0060
Carbon (C), % 0
0.090 to 0.13
Chromium (Cr), % 0
8.5 to 9.5
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
86.2 to 88.9
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.8 to 2.2
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0
0.040 to 0.090
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0
0.1 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
0.9 to 1.1
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010
Residuals, % 0 to 0.5
0