MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. AWS ER90S-B9

C61500 bronze belongs to the copper alloys classification, while AWS ER90S-B9 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is AWS ER90S-B9.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
18
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
75
Tensile Strength: Ultimate (UTS), MPa 480 to 970
690
Tensile Strength: Yield (Proof), MPa 150 to 720
470

Thermal Properties

Latent Heat of Fusion, J/g 220
270
Melting Completion (Liquidus), °C 1040
1450
Melting Onset (Solidus), °C 1030
1410
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
25
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 29
7.0
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
37
Embodied Water, L/kg 380
91

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
570
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
25
Strength to Weight: Bending, points 16 to 26
22
Thermal Diffusivity, mm2/s 16
6.9
Thermal Shock Resistance, points 17 to 34
19

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0 to 0.040
Carbon (C), % 0
0.070 to 0.13
Chromium (Cr), % 0
8.0 to 10.5
Copper (Cu), % 89 to 90.5
0 to 0.2
Iron (Fe), % 0
84.4 to 90.7
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 1.2
Molybdenum (Mo), % 0
0.85 to 1.2
Nickel (Ni), % 1.8 to 2.2
0 to 0.8
Niobium (Nb), % 0
0.020 to 0.1
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0
0.15 to 0.5
Sulfur (S), % 0
0 to 0.010
Vanadium (V), % 0
0.15 to 0.3
Residuals, % 0
0 to 0.5