MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. EN 1.4606 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while EN 1.4606 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is EN 1.4606 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
23 to 39
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
75
Shear Strength, MPa 350 to 550
410 to 640
Tensile Strength: Ultimate (UTS), MPa 480 to 970
600 to 1020
Tensile Strength: Yield (Proof), MPa 150 to 720
280 to 630

Thermal Properties

Latent Heat of Fusion, J/g 220
300
Maximum Temperature: Mechanical, °C 220
910
Melting Completion (Liquidus), °C 1040
1430
Melting Onset (Solidus), °C 1030
1380
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
14
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 29
26
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.2
6.0
Embodied Energy, MJ/kg 52
87
Embodied Water, L/kg 380
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
190 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
200 to 1010
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
21 to 36
Strength to Weight: Bending, points 16 to 26
20 to 28
Thermal Diffusivity, mm2/s 16
3.7
Thermal Shock Resistance, points 17 to 34
21 to 35

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0 to 0.35
Boron (B), % 0
0.0010 to 0.010
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
13 to 16
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
49.2 to 59
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 1.8 to 2.2
24 to 27
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5
Residuals, % 0 to 0.5
0