MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. EN 1.7335 Steel

C61500 bronze belongs to the copper alloys classification, while EN 1.7335 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is EN 1.7335 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
21 to 22
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
73
Shear Strength, MPa 350 to 550
310 to 330
Tensile Strength: Ultimate (UTS), MPa 480 to 970
500 to 520
Tensile Strength: Yield (Proof), MPa 150 to 720
280 to 310

Thermal Properties

Latent Heat of Fusion, J/g 220
250
Maximum Temperature: Mechanical, °C 220
430
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 1030
1420
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
44
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 29
2.8
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.6
Embodied Energy, MJ/kg 52
21
Embodied Water, L/kg 380
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
91 to 97
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
210 to 260
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
18
Strength to Weight: Bending, points 16 to 26
18
Thermal Diffusivity, mm2/s 16
12
Thermal Shock Resistance, points 17 to 34
15

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0.080 to 0.18
Chromium (Cr), % 0
0.7 to 1.2
Copper (Cu), % 89 to 90.5
0 to 0.3
Iron (Fe), % 0
96.4 to 98.4
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 1.8 to 2.2
0
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0