MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. EN 1.7383 Steel

C61500 bronze belongs to the copper alloys classification, while EN 1.7383 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is EN 1.7383 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
20 to 23
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
74
Shear Strength, MPa 350 to 550
350 to 380
Tensile Strength: Ultimate (UTS), MPa 480 to 970
560 to 610
Tensile Strength: Yield (Proof), MPa 150 to 720
300 to 400

Thermal Properties

Latent Heat of Fusion, J/g 220
260
Maximum Temperature: Mechanical, °C 220
460
Melting Completion (Liquidus), °C 1040
1470
Melting Onset (Solidus), °C 1030
1430
Specific Heat Capacity, J/kg-K 430
470
Thermal Conductivity, W/m-K 58
39
Thermal Expansion, µm/m-K 18
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 13
8.8

Otherwise Unclassified Properties

Base Metal Price, % relative 29
3.9
Density, g/cm3 8.4
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.8
Embodied Energy, MJ/kg 52
23
Embodied Water, L/kg 380
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
240 to 420
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
24
Strength to Weight: Axial, points 16 to 32
20 to 22
Strength to Weight: Bending, points 16 to 26
19 to 20
Thermal Diffusivity, mm2/s 16
11
Thermal Shock Resistance, points 17 to 34
16 to 18

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0 to 0.040
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 89 to 90.5
0 to 0.3
Iron (Fe), % 0
94.3 to 96.6
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 1.8 to 2.2
0 to 0.3
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Residuals, % 0 to 0.5
0