MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. C81500 Copper

Both C61500 bronze and C81500 copper are copper alloys. They have a moderately high 90% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 3.0 to 55
17
Poisson's Ratio 0.34
0.34
Shear Modulus, GPa 42
44
Tensile Strength: Ultimate (UTS), MPa 480 to 970
350
Tensile Strength: Yield (Proof), MPa 150 to 720
280

Thermal Properties

Latent Heat of Fusion, J/g 220
210
Maximum Temperature: Mechanical, °C 220
200
Melting Completion (Liquidus), °C 1040
1090
Melting Onset (Solidus), °C 1030
1080
Specific Heat Capacity, J/kg-K 430
390
Thermal Conductivity, W/m-K 58
320
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
82
Electrical Conductivity: Equal Weight (Specific), % IACS 13
83

Otherwise Unclassified Properties

Base Metal Price, % relative 29
31
Density, g/cm3 8.4
8.9
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 52
41
Embodied Water, L/kg 380
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
56
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
330
Stiffness to Weight: Axial, points 7.5
7.3
Stiffness to Weight: Bending, points 19
18
Strength to Weight: Axial, points 16 to 32
11
Strength to Weight: Bending, points 16 to 26
12
Thermal Diffusivity, mm2/s 16
91
Thermal Shock Resistance, points 17 to 34
12

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0 to 0.1
Chromium (Cr), % 0
0.4 to 1.5
Copper (Cu), % 89 to 90.5
97.4 to 99.6
Iron (Fe), % 0
0 to 0.1
Lead (Pb), % 0 to 0.015
0 to 0.020
Nickel (Ni), % 1.8 to 2.2
0
Silicon (Si), % 0
0 to 0.15
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5