MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. N06007 Nickel

C61500 bronze belongs to the copper alloys classification, while N06007 nickel belongs to the nickel alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is N06007 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 3.0 to 55
38
Poisson's Ratio 0.34
0.29
Shear Modulus, GPa 42
79
Shear Strength, MPa 350 to 550
470
Tensile Strength: Ultimate (UTS), MPa 480 to 970
690
Tensile Strength: Yield (Proof), MPa 150 to 720
260

Thermal Properties

Latent Heat of Fusion, J/g 220
320
Maximum Temperature: Mechanical, °C 220
990
Melting Completion (Liquidus), °C 1040
1340
Melting Onset (Solidus), °C 1030
1260
Specific Heat Capacity, J/kg-K 430
450
Thermal Conductivity, W/m-K 58
10
Thermal Expansion, µm/m-K 18
14

Otherwise Unclassified Properties

Base Metal Price, % relative 29
60
Density, g/cm3 8.4
8.4
Embodied Carbon, kg CO2/kg material 3.2
10
Embodied Energy, MJ/kg 52
140
Embodied Water, L/kg 380
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
200
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
170
Stiffness to Weight: Axial, points 7.5
13
Stiffness to Weight: Bending, points 19
23
Strength to Weight: Axial, points 16 to 32
23
Strength to Weight: Bending, points 16 to 26
21
Thermal Diffusivity, mm2/s 16
2.7
Thermal Shock Resistance, points 17 to 34
18

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
21 to 23.5
Cobalt (Co), % 0
0 to 2.5
Copper (Cu), % 89 to 90.5
1.5 to 2.5
Iron (Fe), % 0
18 to 21
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
1.0 to 2.0
Molybdenum (Mo), % 0
5.5 to 7.5
Nickel (Ni), % 1.8 to 2.2
36.1 to 51.1
Niobium (Nb), % 0
1.8 to 2.5
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Tungsten (W), % 0
0 to 1.0
Residuals, % 0 to 0.5
0