MakeItFrom.com
Menu (ESC)

C61500 Bronze vs. S36200 Stainless Steel

C61500 bronze belongs to the copper alloys classification, while S36200 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61500 bronze and the bottom bar is S36200 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 3.0 to 55
3.4 to 4.6
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 42
76
Shear Strength, MPa 350 to 550
680 to 810
Tensile Strength: Ultimate (UTS), MPa 480 to 970
1180 to 1410
Tensile Strength: Yield (Proof), MPa 150 to 720
960 to 1240

Thermal Properties

Latent Heat of Fusion, J/g 220
280
Maximum Temperature: Mechanical, °C 220
820
Melting Completion (Liquidus), °C 1040
1440
Melting Onset (Solidus), °C 1030
1400
Specific Heat Capacity, J/kg-K 430
480
Thermal Conductivity, W/m-K 58
16
Thermal Expansion, µm/m-K 18
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 13
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 29
12
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 3.2
2.8
Embodied Energy, MJ/kg 52
40
Embodied Water, L/kg 380
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 27 to 200
46 to 51
Resilience: Unit (Modulus of Resilience), kJ/m3 100 to 2310
2380 to 3930
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 16 to 32
42 to 50
Strength to Weight: Bending, points 16 to 26
32 to 36
Thermal Diffusivity, mm2/s 16
4.3
Thermal Shock Resistance, points 17 to 34
40 to 48

Alloy Composition

Aluminum (Al), % 7.7 to 8.3
0 to 0.1
Carbon (C), % 0
0 to 0.050
Chromium (Cr), % 0
14 to 14.5
Copper (Cu), % 89 to 90.5
0
Iron (Fe), % 0
75.4 to 79.5
Lead (Pb), % 0 to 0.015
0
Manganese (Mn), % 0
0 to 0.5
Molybdenum (Mo), % 0
0 to 0.3
Nickel (Ni), % 1.8 to 2.2
6.5 to 7.0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
0 to 0.3
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0
0.6 to 0.9
Residuals, % 0 to 0.5
0