MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. 4015 Aluminum

C61800 bronze belongs to the copper alloys classification, while 4015 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is C61800 bronze and the bottom bar is 4015 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
70
Elongation at Break, % 26
1.1 to 23
Fatigue Strength, MPa 190
46 to 71
Poisson's Ratio 0.34
0.33
Shear Modulus, GPa 44
26
Shear Strength, MPa 310
82 to 120
Tensile Strength: Ultimate (UTS), MPa 740
130 to 220
Tensile Strength: Yield (Proof), MPa 310
50 to 200

Thermal Properties

Latent Heat of Fusion, J/g 230
420
Maximum Temperature: Mechanical, °C 220
160
Melting Completion (Liquidus), °C 1050
640
Melting Onset (Solidus), °C 1040
600
Specific Heat Capacity, J/kg-K 440
900
Thermal Conductivity, W/m-K 64
160
Thermal Expansion, µm/m-K 18
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
41
Electrical Conductivity: Equal Weight (Specific), % IACS 14
130

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.5
Density, g/cm3 8.3
2.7
Embodied Carbon, kg CO2/kg material 3.1
8.1
Embodied Energy, MJ/kg 52
150
Embodied Water, L/kg 390
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
2.4 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 420
18 to 290
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
50
Strength to Weight: Axial, points 25
13 to 22
Strength to Weight: Bending, points 22
21 to 30
Thermal Diffusivity, mm2/s 18
66
Thermal Shock Resistance, points 26
5.7 to 9.7

Alloy Composition

Aluminum (Al), % 8.5 to 11
94.9 to 97.9
Copper (Cu), % 86.9 to 91
0 to 0.2
Iron (Fe), % 0.5 to 1.5
0 to 0.7
Lead (Pb), % 0 to 0.020
0
Magnesium (Mg), % 0
0.1 to 0.5
Manganese (Mn), % 0
0.6 to 1.2
Silicon (Si), % 0 to 0.1
1.4 to 2.2
Zinc (Zn), % 0 to 0.020
0 to 0.2
Residuals, % 0
0 to 0.15