MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. AISI 301 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while AISI 301 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is AISI 301 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 26
7.4 to 46
Fatigue Strength, MPa 190
210 to 600
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
77
Shear Strength, MPa 310
410 to 860
Tensile Strength: Ultimate (UTS), MPa 740
590 to 1460
Tensile Strength: Yield (Proof), MPa 310
230 to 1080

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
840
Melting Completion (Liquidus), °C 1050
1420
Melting Onset (Solidus), °C 1040
1400
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
16
Thermal Expansion, µm/m-K 18
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 28
13
Density, g/cm3 8.3
7.8
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 52
39
Embodied Water, L/kg 390
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
99 to 300
Resilience: Unit (Modulus of Resilience), kJ/m3 420
130 to 2970
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
21 to 52
Strength to Weight: Bending, points 22
20 to 37
Thermal Diffusivity, mm2/s 18
4.2
Thermal Shock Resistance, points 26
12 to 31

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
70.7 to 78
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 2.0
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0