MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. AISI 420 Stainless Steel

C61800 bronze belongs to the copper alloys classification, while AISI 420 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is AISI 420 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 26
8.0 to 15
Fatigue Strength, MPa 190
220 to 670
Poisson's Ratio 0.34
0.28
Rockwell B Hardness 89
84
Shear Modulus, GPa 44
76
Shear Strength, MPa 310
420 to 1010
Tensile Strength: Ultimate (UTS), MPa 740
690 to 1720
Tensile Strength: Yield (Proof), MPa 310
380 to 1310

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
620
Melting Completion (Liquidus), °C 1050
1510
Melting Onset (Solidus), °C 1040
1450
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
27
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 14
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 28
7.5
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.0
Embodied Energy, MJ/kg 52
28
Embodied Water, L/kg 390
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
88 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 420
380 to 4410
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
25 to 62
Strength to Weight: Bending, points 22
22 to 41
Thermal Diffusivity, mm2/s 18
7.3
Thermal Shock Resistance, points 26
25 to 62

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
0.15 to 0.4
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
82.3 to 87.9
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0