MakeItFrom.com
Menu (ESC)

C61800 Bronze vs. AISI 440C Stainless Steel

C61800 bronze belongs to the copper alloys classification, while AISI 440C stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is C61800 bronze and the bottom bar is AISI 440C stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
200
Elongation at Break, % 26
2.0 to 14
Fatigue Strength, MPa 190
260 to 840
Poisson's Ratio 0.34
0.28
Shear Modulus, GPa 44
76
Shear Strength, MPa 310
430 to 1120
Tensile Strength: Ultimate (UTS), MPa 740
710 to 1970
Tensile Strength: Yield (Proof), MPa 310
450 to 1900

Thermal Properties

Latent Heat of Fusion, J/g 230
280
Maximum Temperature: Mechanical, °C 220
870
Melting Completion (Liquidus), °C 1050
1480
Melting Onset (Solidus), °C 1040
1370
Specific Heat Capacity, J/kg-K 440
480
Thermal Conductivity, W/m-K 64
22
Thermal Expansion, µm/m-K 18
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 13
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 14
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 28
9.0
Density, g/cm3 8.3
7.7
Embodied Carbon, kg CO2/kg material 3.1
2.2
Embodied Energy, MJ/kg 52
31
Embodied Water, L/kg 390
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
39 to 88
Stiffness to Weight: Axial, points 7.5
14
Stiffness to Weight: Bending, points 19
25
Strength to Weight: Axial, points 25
26 to 71
Strength to Weight: Bending, points 22
23 to 46
Thermal Diffusivity, mm2/s 18
6.0
Thermal Shock Resistance, points 26
26 to 71

Alloy Composition

Aluminum (Al), % 8.5 to 11
0
Carbon (C), % 0
1.0 to 1.2
Chromium (Cr), % 0
16 to 18
Copper (Cu), % 86.9 to 91
0
Iron (Fe), % 0.5 to 1.5
78 to 83.1
Lead (Pb), % 0 to 0.020
0
Manganese (Mn), % 0
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.75
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Zinc (Zn), % 0 to 0.020
0
Residuals, % 0 to 0.5
0